» WELCOME
» AN INTRODUCTION
» PROFILES
» LM WATCH
» CONTACT
» LOBBYWATCH LINKS
»


Redesigning Crops to Harvest Fuel (9/9/2006)

1.Technology - Redesigning Crops to Harvest Fuel

2.Ethanol could leave the world hungry

EXCERPTS: While Syngenta's corn is meant for industrial use in the United States, it is almost inevitable that some of it will get into human and animal food supplies, including exports, because of cross-pollination or seed intermingling. (item 1)

...overuse of our agricultural resources could have consequences even more drastic than, say, being deprived of our SUVs. It could leave much of the world hungry. (item 2)
---

1.Technology - Redesigning Crops to Harvest Fuel
NEW YORK TIMES, 8 September 2006
http://www.truthabouttrade.org/article.asp?id=6290

More miles to the bushel.

That is the new mission of crop scientists. In an era of $3-a-gallon gasoline and growing concern about global warming from fossil fuels, seed and biotechnology companies see a big new opportunity in developing corn and other crops tailored for use in ethanol and other biofuels.

Syngenta, for instance, hopes in 2008 to begin selling a genetically engineered corn designed to help convert itself into ethanol. Each kernel of this self-processing corn contains an enzyme that must otherwise be added separately at the ethanol factory.

Just last week, DuPont and Bunge announced that their existing joint venture to improve soybeans for food would also start designing beans for biodiesel fuel and other industrial uses.

And Ceres, a plant genetics company in California, is at work on turning switch grass, a Prairie States native, into an energy crop.

"You could turn Oklahoma into an OPEC member by converting all its farmland to switch grass," said Richard W. Hamilton, the Ceres chief executive.

Developing energy crops could mean new applications of genetic engineering, which for years has been aimed at making plants resistant to insects and herbicides, but would now include altering their fundamental structure. One goal, for example, is to reduce the amount of lignin, a substance that gives plants the stiffness to stand upright but interferes with turning a plant’s cellulose into ethanol.

Such prospects are starting to alarm some environmentalists, who worry that altered plants will cross-pollinate in the wild, resulting in forests that practically droop for want of lignin. And some oppose the notion of altering corn to feed the nation's addiction to automobiles.

"I don't think people want extra enzymes in the food supply put there to better fit the crops for energy production," said Margaret Mellon, director of the food and environment program at the Union of Concerned Scientists.

But proponents of designer fuel crops argue that the risks are small compared with the threat of dependence on foreign oil. Some studies also suggest that ethanol use could help fight global warming because the crops that help produce ethanol absorb carbon dioxide.

So far, much of the attention on bioenergy has focused on improving the chemical processes for turning crops into ethanol. But experts say that if biofuels are to make a significant dent in the nation’s petroleum consumption, the crops themselves must be improved to provide more energy from an acre.

And new agricultural sources beyond corn must be developed, they say. Even if the nation’s entire corn crop were converted to ethanol production, it would replace only about 15 percent of petroleum use, according to an Energy Department report.

"Half the improvement we make over the next 10 to 15 years will come from improving the feedstocks," said Gerald A. Tuskan, a biofuel expert in the department, referring to the crops fed into the ethanol factories.

Some of the work will not necessarily involve genetic engineering. Notably, Monsanto, the leader by far in crop biotechnology, says that its biofuel development will focus on conventional breeding, which it says is quicker.

Monsanto has tested its existing corn varieties to determine which ones are better for ethanol production. Pioneer Hi-Bred International, the DuPont subsidiary that is Monsanto's rival in the corn-seed business, is doing the same.

The companies say that the designated varieties, which have higher fermentable starch content, can increase ethanol production 2 to 5 percent over other corn. And some factories are starting to request certain types of corn or to pay a premium for more desirable corn, said Pradip Das, head of crop analytics at Monsanto.

Still, some ethanol factory operators say they do not really care which corn they get. The factories are so hungry that they take "pretty much all the commercial corn you can get your hands on," said David Nelson, chairman of Midwest Grain Processors, which runs an ethanol plant in Lakota, Iowa.

William S. Niebur, vice president for crop genetics research and development at DuPont, said the demands of ethanol production would require extremely hardy corn.

"The demand for this corn grain could be so dramatic," he said, "that it would change farming practices." Instead of rotating corn with other crops, he said, farmers would be pressed to grow corn year after year, which could strain the soil and allow the buildup of insects and disease.

Many of the traits needed for energy corn — high yield as well as tolerance to disease, insects and drought — would also be desirable in corn used for human and animal food. That is not the case, though, with Syngenta's enzyme corn, which would be specifically for energy production.

Generally, the enzyme, known as amylase, is made in vats of bacteria. Ethanol manufacturers add the enzyme to corn to break down starch into sugar, which can be fermented into ethanol.

To get corn to produce its own amylase, Syngenta inserted a gene borrowed from a type of microbe called archaea that live near hot-water vents on the floor of the ocean.

The gene — actually a composite of three amylase genes — was developed with the help of Diversa, a San Diego company that specializes in finding chemicals in organisms that inhabit extreme environments.

Diversa says that because its enzyme is derived from a heat-loving microbe, ethanol factories can operate at higher temperatures and under more acidic conditions, improving efficiency.

Some people in the biofuel industry question what the advantage is of having the enzyme in the corn rather than just buying the very similar amylase that Diversa is already selling.

While Syngenta's corn is meant for industrial use in the United States, it is almost inevitable that some of it will get into human and animal food supplies, including exports, because of cross-pollination or seed intermingling. That is what happened in 2000 with Aventis CropScience's StarLink corn, which was approved only for animal use, yet ended up in human food, forcing recalls and disrupting exports.

To prevent such liability, Syngenta is seeking approval of the corn for human and animal food use, not only in the United States but in Europe, South Africa and elsewhere. Syngenta says the amylase enzyme is safe, noting that these enzymes are found in saliva.

But Bill Freese of the Center for Food Safety, an advocacy group in Washington opposed to biotechnology crops, said that this particular amylase is from a little-studied exotic microbe and that some amylase induces allergy.

The Agriculture Department has asked Syngenta for more information on its application.

Regardless of what is done to corn, some experts say that starch alone will not provide enough ethanol. The new frontier is to produce ethanol from cellulose, the fibrous material in all plants. Cellulose is made of complex carbohydrates that can be broken down by enzymes into simpler sugars for fermenting into ethanol.

While some of the cellulose for biofuels could come from agricultural residue like corn stalks, there will probably be a need for other crops grown specifically for energy production — in particular, perennial plants like grasses that require far less energy-consuming irrigation and fertilization than crops like corn that have to be replanted each year.

That is why Ceres, a privately owned supplier of genetics technology to Monsanto, sees a future in switch grass. The company's greenhouses are filled with versions of tall, gangly grass plants, some developed by conventional breeding and some by genetic engineering.

The grasses are meant to have higher yields, to withstand drought or to break down easily in the ethanol factory — "the energy crop that melts in your mouth, if you will," Mr. Hamilton said.

Ceres, based in Thousand Oaks, Calif., is not working with Monsanto on switch grass but is collaborating with the Samuel Roberts Noble Foundation in Ardmore, Okla., a leading research institute on forage grasses. Mr. Hamilton said the partners were already testing conventionally bred switch grass varieties that yield eight or nine tons of biomass an acre, compared with about five tons for typical switch grass.

Mendel Biotechnology, based in Hayward, Calif., is looking more at miscanthus, a perennial grass native to China, where Mendel has set up an operation.

The company said miscanthus could produce well over 20 tons an acre each year. "No planting, no fertilizing, no irrigation," said its chief executive, Chris Somerville, who is also the director of plant biology at the Carnegie Institution and a Stanford University professor. "You can just cut it every year for 10 years."

Another cellulose candidate is poplar, which recently became the first tree to have its entire genome sequenced, an effort led by the Energy Department.

At first, significantly higher-yielding cellulose sources can come from conventional breeding, experts say. But later, genetic engineering may be needed. That could raise concerns because trees and grasses live longer and spread more easily than currently engineered crops like corn and soybeans.

And yet, energy crops may also be an opportunity for the industry to burnish its public image.

"After all," the journal Nature Biotechnology said in a recent editorial, "it's difficult to oppose a technology that's helping to save the planet."
---

2.Ethanol could leave the world hungry
One tankful of the latest craze in alternative energy could feed one person for a year, Lester Brown tells Fortune.
By Lester Brown Fortune Magazine, August 16 2006
http://money.cnn.com/magazines/fortune/fortune_archive/2006/08/21/8383659/

The growing myth that corn is a cure-all for our energy woes is leading us toward a potentially dangerous global fight for food. While crop-based ethanol -the latest craze in alternative energy - promises a guilt-free way to keep our gas tanks full, the reality is that overuse of our agricultural resources could have consequences even more drastic than, say, being deprived of our SUVs. It could leave much of the world hungry.

We are facing an epic competition between the 800 million motorists who want to protect their mobility and the two billion poorest people in the world who simply want to survive. In effect, supermarkets and service stations are now competing for the same resources.

This year cars, not people, will claim most of the increase in world grain consumption. The problem is simple: It takes a whole lot of agricultural produce to create a modest amount of automotive fuel.

The grain required to fill a 25-gallon SUV gas tank with ethanol, for instance, could feed one person for a year. If today's entire U.S. grain harvest were converted into fuel for cars, it would still satisfy less than one-sixth of U.S. demand.

Worldwide increase in grain consumption

The U.S. Department of Agriculture reports that world grain consumption will increase by 20 million tons this year, roughly 1%. Of that, 14 million tons will be used to fuel cars in the U.S., leaving only six million tons to cover the world's growing food needs.

Already commodity prices are rising. Sugar prices have doubled over the past 18 months (driven in part by Brazil's use of sugar cane for fuel), and world corn and wheat prices are up one-fourth so far this year.

For the world's poorest people, many of whom spend half or more of their income on food, rising grain prices can quickly become life threatening.

Once stimulated solely by government subsidies, biofuel production is now being driven largely by the runaway price of oil. Many food commodities, including corn, wheat, rice, soybeans, and sugar cane, can be converted into fuel; thus the food and energy economies are beginning to merge.

The market is setting the price for farm commodities at their oil-equivalent value. As the price of oil climbs, so will the price of food.

In some U.S. Cornbelt states, ethanol distilleries are taking over the corn supply. In Iowa, 25 ethanol plants are operating, four are under construction, and another 26 are planned.

Iowa State University economist Bob Wisner observes that if all those plants are built, distilleries would use the entire Iowa corn harvest. In South Dakota, ethanol distilleries are already claiming over half that state's crop.

The key to lessening demand for grain is to commercialize ethanol production from cellulosic materials such as switchgrass or poplar trees, a prospect that is at least five years away.

Malaysia, the leading exporter of palm oil, is emerging as the biofuel leader in Asia. But after approving 32 biodiesel refineries within the past 15 months, it recently suspended further licensing while it assesses the adequacy of its palm oil supplies. Fast-rising global demand for palm oil for both food and biodiesel purposes, coupled with rising domestic needs, has the government concerned that there will not be enough to go around.

Less costly alternatives

There are truly guilt-free alternatives to using food-based fuels. The equivalent of the 3% of U.S. automotive fuel supplies coming from ethanol could be achieved several times over - and at a fraction of the cost - by raising auto fuel-efficiency standards by 20%. (Unfortunately Detroit has resisted this, preferring to produce flex-fuel vehicles that will burn either gasoline or ethanol.)

Or what if we shifted to gas-electric hybrid plug-in cars over the next decade, powering short-distance driving, such as the daily commute or grocery shopping, with electricity?

By investing not in hundreds of wind farms, as we now are, but rather in thousands of them to feed cheap electricity into the grid, the U.S. could have cars running primarily on wind energy, and at the gasoline equivalent of less than $1 a gallon.

Clearly, solutions exist. The world desperately needs a strategy to deal with the emerging food-fuel battle. As the world's leading grain producer and exporter, as well as its largest producer of ethanol, the U.S. is in the driver's seat.

Lester R. Brown is president of the Earth Policy Institute and author of "Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble."

Go to a Print friendly Page


Email this Article to a Friend


Back to the Archive